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A Proof of Cauchy’s Integral Theorem
L. FLaT1O
Belfer Graduate School of Science, Yeshiva University, New York, New York 10033
AND

O. SHISHA

Mathematics Research Center, Naval Research Laboratory, Washington, D. C. 20375

We give a simple proof of Cauchy’s integral theorem viewed, as usual, as
the foundation of complex analysis.

THEOREM. Let f be holomorphic in an open set D of the (finite) complex
plane. Let c(t), c)(t) be complex functions, continuous and of bounded variation
in [0, 1], mapping it into D, and satisfying c(0) = c(1), ¢;,(0) = ¢;(1). Suppose
that ¢ can be deformed in D (as a loop) to ¢y , namely, suppose there exists a
complex function C(t,s), continuous in the square 0 <t <1, 0 <s <1,
and mapping it into D such that

CO,s5) = C(l,s), foreverysel0,1],
C(@, 0) = (1), and Ct, 1) = ¢ (t), foreverytel0,1].
Then
fc f(2) dz = f S@dz.
In particular, if ¢, is constant in [0, 1] so that ¢ can be deformed in D to a point,
then fc f(@dz=0.

Proof. (I) We begin by assuming that f’ is continuous in D and that
C(t, s) can be chosen so that its second order partial derivatives exist and are
continuous at every point of [0, 1] x [0, 1}.

For every s € [0, 1], let

16)= [ f@dz = [ 1) dCs) = [ €, 9) G-
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Then I(s) is continuous in [0, 1]. We want to prove that I(0) = I(1); this will
follow if we show that I'(s) = 0 for every s € (0, 1).
But for every such s,

oC oC 7 EC]dt

1e) = [ [fce) 5 5 + 1N 55

— [ e recan) o a+ [ sca, 945 5

= [rcsn5E]_ — [ e sy 5 d

+ [ st N5 G =o.

(II) We drop now the assumption on C made in (I), but continue to
assume f’ is continuous in D. For n = 1, 2,..., consider the Bernstein poly-
nomial

B(s)=3 3 C ( )(;’)( 2 ) (1 — 07 sH(1 — sy,

j=0 k=0

Then [1, p. 122; or 2, p. 327] B,(t,s) converges uniformly to C(z,s) in
[0, 1] % [0, 1]. As we easily see, there is an integer n, >> 1, and a compact
subset D, of D containing C(¢, s) and B,(t, s) whenevern > n,,0 <t < 1,
0<<s<1.

Observe that, for n = 1, 2,...,

B,0,s) = }; (o, )( ) st — sy

=Yy C (1-’;—)(’,:) s*(1 — s)* = B,(1, s).
By part (I), for all n == n,
fB,,(t,o)f(Z) dz = jB,,(t.l) f(Z) dz. (1)

Set

I"zf,,()f(z)dz—fcf(z)dz, n=ny,ny+Lngt 2. Q)

(2,0
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Then for these n we have, using Riemann—Stieltjes integration by parts,
1 1
L = [ f(Balt, 0)) Bt 0) — [ f(Balt, 0) dC(t, 0)
(] 0
+ [ 7Bate, ) dctt,0) - [ 5(c, 0 dcr, 0
= [ 1-Bu6.0) -+ €. 01 1Byt 0)
+ [ UBule,0) - £(Ct, )] 4, 0);
1,1 < gmax, | Bus,0) — €, 00 - [ | (Buts, 0) 5 Bst0,0) [t

+ [max, | /Bu(t; ) — £(C&, )] VTG, 0),

where VC(z, 0) is the total variation of C(z, 0) in [0, 1].
Now, forn =1, 2,...,

B,(1,0) = z c(L.0)(7) ra —

is the (one-dimensional) nth order Bernstein polynomial of C(t, 0). Therefore,
by a simple property of these polynomials [4, p. 23],

1
[ 50,0 | de = vB&,0) < VC@00),  n =12

1]

Hence, for n = n,,
| 1| < VC(r, O)lmax | f'(2)] - jmax, | By(t, 0) — C(z, 0)]
+ max, | F(B(t, 0) — F(C(t, 0] O,
as n — oo because of the uniform continuity of f on D, . So, by (2),
[ f@d—~] f)a
B,(t,0) ¢

In the same way,

L @& f £(2) dz.
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Hence, by (1),
L @) dz = j 1) dz.

(IIT) Finally, the theorem under the additional hypothesis of continuity
of £/ in D readily implies the theorem without this restriction, as has been
observed in the literature. For the restricted theorem implies, in the usual
way, Cauchy’s integral formula in, say, the form: If F'(z) is continuous in an
open set E 3 z,, if k(f) (with k(0) = k(1)) is a function, continuous and of
bounded variation in [0, 1], mapping it into E — {z,}, and if, for some & > 0,
k can be deformed in E — {z,} (as a loop) toevery k, , 0 < r < 8, where

kft) = zo +re¥®,  0<t<I,
then
F(zg) = Qui) | F(z)(z — zy) 1 dz.
k

The last representation implies, in the usual manner, that a complex function
possessing a continuous derivative throughout an open set has everywhere
there derivatives of all orders. One proves also, say, by the usual method of
bisection, that if F has a (finite) derivative at every point on or within a
triangle T, then (7 F(z) dz = 0. Suppose now that a function F is holomorphic
in a disk | z — a | < r. The last result implies, by the standard argument,
that F has there a primitive, namely IL, F(u) du, where L (t) = a + t(z — a),
0 < ¢ < 1. This primitive, having a continuous derivative throughout the
disk, has everywhere there derivatives of all orders; therefore, so does F.
Hence, being holomorphic in an open set implies having everywhere there
derivatives of all orders and, in particular, having there a continuous first
derivative. Consequently, Cauchy’s integral theorem holds in its unrestricted
form, and similarly in Cauchy’s integral formula the requirement that F’ be
continuous need not be explicitly made. We proved on our way some funda-
mental results other than Cauchy’s integral theorem which should not be
considered an extra effort if one’s purpose is to construct complex analysis,
as is customarily done, on the basis of Cauchy’s integral theorem.

Remark. 1t is of interest to note, though not needed for our purpose,
that the reasoning of (I) and (II) can be used to obtain a stronger result,
namely, that the desired conclusion holds under the assumption that f' is
bounded on every compact subset of D. Indeed, under this condition the
formulas we derived in (I) for I'(s) still hold; the integrals, however, being
Lebesgue [3, Theorems 250, 242, 261]; in particular, again I(0) = I(1).
Similarly, the arguments of part (II) continue to hold, the only difference
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being that the integral involving f'(B,(¢, 0)) has to be considered as Lebesgue
[5, p. 123, (iv)].

Note added in proof. The authors have just learned that the proof in (I) can be found
in the literature, e.g. in Hurwitz-Courant, Funktionentheorie, Springer-Verlag, Berlin,
4th edition, 1964, p. 288.
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